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Abstract—Safe and efficient real-time robotics control is highly
delay-sensitive. Enabling such critical applications via mobile
communication networks, therefore, hinges on reliably provision-
ing radio resources at low latency. Here, employing the Open Ra-
dio Access Network (O-RAN) concept, networks can be built with
adaptive intelligent features, such as Artificial Intelligence (AI)-
based scheduling policies for optimized resource management.
By harnessing the innovative concept of distributed Applications
(dApps) deployed inside the Open RAN Distributed Unit (O-DU),
predictive resource allocation can reliably provide low latencies
for robot control at increased spectral efficiency. This work
demonstrates the Key Performance Indicators (KPIs) achieved
with a proposed real-time proactive scheduling dApp employing
Al methods. Results are derived from a real-world testbed that
integrates predictive communication with a digital twin of the
two-wheeled inverted pendulum robot evoBOT, designed for
intralogistics. The closed-loop locomotion control, also providing
upright stability control, is performed on the mobile edge via an
evolved O-RAN system hosting the proposed dApp. Relative to
optimized reactive network slicing, our approach yields a 34%
mean reduction for uplink delays. Moreover, radio resource usage
is reduced by up to 47% compared to highly optimized reactive
scheduling, exhibiting similar control performance.

I. INTRODUCTION

Robotics depends on control algorithms that are highly
sensitive to delays. However, moving functions such as energy-
intensive computer vision or locomotion control from individ-
ual entities to a Mobile Edge Cloud (MEC) may be desirable
to facilitate, e.g., swarm optimization while increasing the
robots’ battery runtime. In turn, this requires reliable, high-
performance wireless communication between robots and the
MEC. Yet, the scheduling of cellular radio resources incurs
delays, which may be unsuitable for such use cases. Here, the
concept of distributed Applications (dApps) [1] has emerged,
leveraging Open Radio Access Networks (O-RANs) to deploy
real-time control loops on Distributed Units (DUs).

This work builds on these concepts by transferring Re-
inforcement Learning (RL)-based stability and locomotion
control for the Digital Twin (DT) of the two-wheeled inverted
pendulum logistics robot evoBOT [2] to the MEC. This
enables reduced computational load on the robot, potentially
resulting in lower battery consumption and increased runtime.
Furthermore, the realized interfaces enable more efficient

centralized fleet control, allowing, e.g., robust cooperative
perception. Using the DT, the O-RAN can be optimized before
deployment on the real robot. Here, we can reduce network
latencies by utilizing Machine Learning (ML)-based predictive
scheduling mechanisms shown to be effective for control sys-
tems traffic in previous work [3]. In this work, we enable real-
time capability, proposing a novel dApp on an open-source
evolved O-RAN network. The application scenario, cf. Fig. 1,
comprises two slices for safety monitoring and remote robot
control respectively. It is based on a real-world testbed and
coupled with an interactive DT of the evoBOT, enabling user
steering of the robot to experience the impact of the studied
scheduling strategies. Performance is evaluated in terms of
latency and spectral efficiency, while the impact on the robot
is quantified via control behavior and the resulting impact on
energy consumption. Moreover, the system’s performance is
assessed under challenging emulated channel conditions.

The work is structured as follows: Sec. II discusses the state
of the art pertaining to this paper. Next, Sec. III illustrates
the ML-based approach to proactive radio resource scheduling
using dApps. Robot locomotion control with the corresponding
DT used for training and testing is presented in Sec. IV.
Evaluation setup and results are given in Sec. V. Lastly, Sec.
VI offers a conclusion and an outlook on future research.
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Fig. 1: Overview of the considered intralogistics scenario. The
proposed data-driven proactive scheduling O-RAN dApp enables the
deployment of real-time control for the robot DT at the mobile edge.
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II. RELATED WORK

Below, related works in the areas of scheduling, network
architecture, ML-based robot control, and DTs are surveyed.

A. Latency-aware Scheduling and Open Network Architecture

Several works study resource scheduling strategies for
Ultra-Reliable Low Latency Communications (URLLC) ser-
vices in combination with broadband applications. The authors
of [4] propose a nested-control-loop scheduling architecture
using combined Real-Time (RT) and near-RT loops to guar-
antee upper bound latencies via stochastic network calculus.
While the work supports multiple URLLC services, it relies
on buffer reporting for resource allocation and provides results
for downlink only, hence, does not exploit anticipating uplink
scheduling. Grant-free architectures [5] have been studied to
minimize latency; however, approaches have to face ineffi-
cient collisions under high network load. Previous work [3]
shows high control performance using proactively guaranteed
resources for an inverted rotary pendulum co-designing control
and communication. There, a near-RT eXtended Application
(xApp) [6] performs proactive scheduling using Long Short-
Term Memory (LSTM) models to anticipate resource demands
of User Equipments (UEs) in batches. Recently, the concept
of dApps was introduced by [1] to support critical real-time
control loops, enabling the direct deployment on the O-DU.
Successful proactive scheduling requires accurate time series
prediction for precise data transmission anticipation. The use
of ML methods for critical functions in the mobile network
requiring trustworthiness, like scheduling, is supported by
explainable Al methods in [7]. Current advances in time series
predictions [8]-[10] enable effective methods that outperform
widely used LSTM methods, as further discussed in Sec. I1I-B.

B. RL-based Robot Control and Digital Twin Modeling

RL has emerged as a powerful technique for learning
dynamic locomotion skills across various robotic platforms,
including humanoids, quadrupeds, and wheeled robots. In hu-
manoid robotics, RL has been successfully applied to achieve
omnidirectional locomotion and to optimize foot placement
strategies [11]. For quadruped robots, RL has enabled running
at high speeds and traversing a variety of different natural
terrains like grass, ice, or gravel [12]. For wheeled robots, [2]
has shown the ability of RL to train agile locomotion tasks. A
common scheme to simultaneously accelerate RL and improve
performance for real-world robotic settings is to integrate addi-
tional knowledge into the training process [13]. In particular,
to transfer trained policies from simulation to real robots,
the robotics community relies on a combination of accurate
simulation models (DTs) and domain randomization tech-
niques. First, the simulation model itself needs to accurately
represent the dynamics of the actual robot, typically involving
real-world data collection and system identification [2], [14].
Subsequently, extensive randomization within the simulation
environment is often used to increase the overall robustness
of the trained control policies for real-world settings [15].

III. PROACTIVE RESOURCE SCHEDULING FOR
LATENCY-CRITICAL APPLICATIONS IN THE OPEN RAN

This section illustrates the developed end-to-end O-RAN
framework for proactive resource scheduling, its architecture,
adaptations on the O-DU and challenges for millisecond-level
traffic prediction with imprecise information.

A. Proactive Resource Management using ML-based dApps

The developed real-world communications testbed architec-
ture shown in Fig. 2 is built entirely on open components.
For the end-to-end O-RAN network, we employ the RAN
stack srsRAN Project [16] offering open Centralized Unit
(CU) and DU implementations. It enables integrating novel
concepts as our scheduling dApp. OpenSGS [17] is used
as core network, providing slicing functionality. To enable
reduced uplink latency, the predictive dApp-enabled resource
scheduling anticipates the UEs’ transmissions. Therefore, the
Radio Link Control (RLC) layer’s uplink Service Data Unit
(SDU) sizes are continuously monitored and serve as input for
the proposed scheduling dApp. Hence, the approach is fully
provided on O-RAN side without cooperation of the UE.

A central connector extends the O-DU Physical Uplink
Shared Channel (PUSCH) scheduler to integrate the proposed
scheduling dApp, providing predictive scheduling on top of
the reactive mechanisms. Every 10 ms, new inference requests
are made of the scheduling dApps to provide new resource
predictions. The models for each service type are served via
Representational State Transfer (REST) protocol by a local
containerized NVIDIA Triton instance hosted on the O-DU.

B. Real-Time Traffic Prediction using Machine Learning

Predictive scheduling requires traffic not to be entirely
random. Hence, the scheduling mechanism exploits common
patterns of control system traffic. Anticipating exact timing
and packet sizes is the main challenge, as arrival process infor-
mation at the base station is distorted by queuing times as well
as packet loss and fragmentation. Additionally, the use of Time
Division Duplex (TDD) systems poses the challenge of jitter
caused by dead times in case the current transmission direction
in the TDD pattern is not aligned with the data transmissions.
By accurate millisecond-level prediction of grants, we prevent
scheduling requests and minimize uplink buffer queuing times
induced by the scheduling scheme.
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Fig. 2: Depiction of the O-RAN framework and communication
streams for data-driven proactive scheduling by the proposed dApp.
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Fig. 3: Experimental testbed setup, including the O-RAN-based network (right), a channel emulator (middle), and safety monitoring as well
as latency-critical evoBOT robot control traffic within the interactive Digital Twin (left). (Demo Video: https://tiny.cc/DTControlDemo)

Training and hyper-parameter optimization are performed
within the PyTorch [18] framework. To determine a suitable
fit, a diverse range of models, including traditional (e.g.
LSTM) and novel methods such as DLinear [9], PatchTST
[8] and TimesNet [10] are evaluated. While TimesNet, whose
architecture includes spectral methods, achieves the highest
performance on the low timescale traffic prediction problem,
model execution time is currently insufficient for real-time
control loops of less than 10 ms. Hence, the evaluation in Sec.
V is based on the straightforward DLinear model, combining
fast inference time of below 400 us with the second-best test
performance. The optimized parameters comprise a learning
rate of 1073 and a batch size of 64; the model is trained for
200 epochs with Mean Squared Error (MSE) using the ADAM
optimizer. Input datasets are pre-processed to mimic real-
world randomized queuing delays and packet losses during
the training process. After training, the models are optimized
using constant folding and exported into Open Neural Network
Exchange (ONNX) format for inference.

C. Provisioning of the Proactive Network Slices

For integration in the O-DU, we extend the srsRAN Project
implementation with a Network Slice Selection Assistance
Information (NSSAI) assignment inside the DU representation
of UEs to support user stream identification. Based on the
NSSAI assigned by the core network, the service type is
identified, e.g., by a Slice Service Type (SST) of 2 [19] for
URLLC. Thus indicating whether a predictive dApp is needed
to optimize the latency-critical traffic. Specific learned traffic
models are matched based on the Slice Descriptor (SD), en-
abling 224 (distinct slices. When a UE connects to an O-DU, its
dApp is registered during initialization. When disconnecting,
models are unregistered for resource efficiency. Using the
concept of xApps, the dynamic dApp management can later
be realized via the near-RT RAN Intelligent Controller (RIC).
Using standard-conforming slice identifiers facilitates future
end-to-end latency budgeting, including the core.

IV. EvVOBOT LocoMOTION CONTROL
AND REAL-TIME DIGITAL TWIN

This section describes the locomotion control of the intra-
logistics robot evoBOT and the corresponding DT.

A. Real-Time evoBOT Digital Twin in NVIDIA Isaac Sim

The evoBOT, developed by the Fraunhofer Institute for
Material Flow and Logistics (IML), is a highly dynamic
autonomous mobile robot designed for intralogistics appli-
cations [2]. It transports objects of up to 40kg at a max.
speed of 10 m/s and operates on two wheels using an inverted
pendulum mechanism. This versatility allows it to perform
tasks traditionally divided among multiple types of robots.

The evoBOT simulation model closely matches the real
robot, offering similar dynamics and sensor data. This DT thus
decouples hard- and software development, reducing deploy-
ment cycles by prototyping ahead of physical construction via
integration into advanced simulation tools like NVIDIA Isaac
Sim and Isaac Gym. Hence, the model facilitates cost-effective
testing of new control and navigation methods, object interac-
tions, constructions, and sensors in a safe virtual environment.
Further model details are available as open-source [2].

To effectively utilize the evoBOT DT, we employ the frame-
work NVIDIA Isaac Sim. Critically, Isaac Sim does not allow
for decoupling physics and rendering frequencies. We address
this via two separate Isaac Sim instances. The first operates in
headless mode and computes physics at a frequency of 200 Hz.
This ensures that the control algorithms receive accurate and
timely physics data, which is crucial for evoBOT’s stability
and performance. The second Isaac Sim instance handles
rendering, visualizing the DT at a lower frequency of e.g.
50Hz. This decoupling combines high-fidelity control with
real-time visualization. By synchronizing both instances, we
create a robust and efficient DT that closely mirrors evoBOT’s
real-world behavior. The resulting close integration within the
real-world O-RAN testbed is depicted in Fig. 3.
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Fig. 4: Training setup using RL to train and deploy control policies
using the evoBOT robot’s Digital Twin with NVIDIA Isaac Sim.

B. Reinforcement Learning-based Locomotion Controller

To train control policies in the simulation-based envi-
ronment, we utilize Isaac Gym [20], a cutting-edge GPU-
accelerated physics simulation framework designed for robot
learning. It allows us to train 4096 robot instances simul-
taneously, significantly accelerating the process. We employ
Proximal Policy Optimization (PPO) [21] as robust learning al-
gorithm. Resulting control policies are developed using fully-
connected neural networks, with three hidden layers each.

Training control policies for dynamic motions involves
defining the problem as Markov Decision Process (MDP) (see
Fig. 4). Observations from the DT’s physics simulation include
linear and angular velocities jiyang, pitch orientation ppgse,
wheel joint velocities ¢, previous actions a;_1, and velocity
commands vcyg. These are scaled, clipped, and normalized
for consistency before local or edge inference of the neural
network. The action space comprises the continuous torque
commands Tyheels fOr the wheels, scaled to allow dynamic
responses to sharp changes. The reward function combines
rewards for linear and angular velocity tracking and energy
consumption based on the wheel’s accelerations. The approach
enhances tracking performance and encourages agile motions,
enabling evoBOT to perform precise, dynamic tasks. Further
details on both training parameters and reward formulations
can be found in [2].

To evaluate the RL-based control performance, we uti-
lize the following two metrics. The Mean Absolute Error
(MAE), assessing velocity tracking accuracy by comparing
commanded to actual velocities, is calculated as:

1 n
MAE = — Uemd,i — Vact,i (D
2| |
with vemg,; for the commanded and v,; for the actual velocity
at time step ¢. The average motor power is estimated as energy
consumption based on the wheel torque and velocity over time:

1 n
Pyg = T Z (|Ttett,i - Wieft,i| 4 | Tright,i - Wright,i|) Ats  (2)
i=1
where Tief,; and wiefi,; as well as Tyigne,; and wrigny,; are torques
respectively angular velocities for the left and right wheels at
experiment time step i. At; is the interval between consecutive
time steps, while 7' corresponds to the total elapsed time.

V. EXPERIMENTAL SETUP AND RESULTS

In the following, the employed evaluation setup is detailed,
as well as the results observed for latency-critical control.

A. Evaluation Scenario and Experimental Testbed

The experimental evaluation employs the intralogistics sce-
nario introduced in Sec. I. The O-RAN testbed uses open
source and Commercial Off-The-Shelf (COTS) components
as depicted in Fig. 3. Two NI USRP X310 Software-Defined
Radios (SDRs), synchronized via an OctoClock time and
frequency reference to enable Multiple Input Multiple Output
(MIMO) capability, are used as radio units for the srsSRAN
Project v24.04 based O-RAN base station. MIMO provides
additional robustness via antenna diversity and is configured
as 4x4 (4 layers) in the down- and 2x2 (1 layer) in the uplink.
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The specific cell parameters are as follows: 2ms TDD
periodicity and DDSU pattern enabling low latency, 30 kHz
Subcarrier Spacing (SCS), 20MHz bandwidth, chosen to
mimic the effects of resource constraints of larger-scale sce-
narios. Scheduling Request Occasion (SRO) periodicity is
varied between 20 and 4ms, while the time domain parameters
K1 = K2 = 2 are optimized for latency, providing the best
reactive scheduling possible. The evoBOT DT built within
NVIDIA Isaac Sim is accelerated by an NVIDIA RTX 4090
GPU. The base station and DT are each hosted by servers
comprised of AMD EPYC 7443 processors, 256 GB memory,
and Ubuntu 22.04, with the O-RAN stack running on real-
time kernel. Best effort traffic is meanwhile generated by a UE
utilizing a Latte Panda Delta 3 single-board computer. DT and
best effort UEs employ a Quectel RM520Q-GL 5G modem.
Realistic radio conditions are created via a Keysight Propsim
F64 channel emulator, including medium-correlation MIMO
processing. For challenging channel conditions, a Tapped-
Delay Line-C (TDLC) non-line-of-sight model defined by
the 3GPP in [22] is emulated with a delay spread of 300,
maximum doppler frequency of 100 Hz, and a robot speed of
5.56m/s. The channel attenuation between base station and
robot UE is 57 dB; 42 dB for the competing safety video UE.

B. Results of the Application-based Evaluation

The implemented radio resource scheduling approaches are
compared by observed one-way latency and spectral efficiency.
Furthermore, we discuss the impact of this communication
delay on the evoBOT’s control performance. We evaluate the
one-way delay as application layer network traversal time
between packet generation by the DT (i.e. robot sensor)
and reception at the controller. Running locomotion control
on the DT, i.e. on the robot itself, serves as baseline. For
measurements, a reference trajectory with actions of desired
angular base velocity w = [—1,1] rad/s and linear velocity

vin = [—1,1] m/s is to be followed by the robot in real-
time. Fig. 5 shows the relations between delay (top), spectral
efficiency (center), and estimated motor power consumption
after (2) by the evoBOT robot (bottom). Starting with a
traditional absolute-priority slicing with the aforementioned
latency optimizations, we evaluate the reactive approach on
the left. Here, we focus first on a baseline SRO periodicity
of 20ms, following a latency-aware 4 ms-SRO adaptation,
enabling higher-frequency uplink scheduling requests. Next,
we allocate PRB statically, proactively providing dedicated
resources to minimize latency (see third column of Fig. 5). At
the very right, we evaluate the proposed ML-aided scheduling
performed by the real-time dApp running the highly efficient
DLinear models. At all settings, we evaluate the Key Perfor-
mance Indicators (KPIs) for 60,000 closed-loop operations of
the control policy, each using the 30s reference trajectory.
Experiments are performed using an ideal attenuated-only as
well as a challenging TDLC channel, as introduced previously.
In parallel, the competing safety monitoring UE fully loads its
transmission queue for maximum load.

Starting with the baseline, the 20ms SRO reactive slicing,
the observed one-way latency exhibits substantial variation
between 2.8 and 22.5ms in congruence with expectations of
up to 20 ms waiting time for sending scheduling requests. Due
to the low K2 value, the time between grant issuing and uplink
transmission is comparably short. While the difference in
latency is slight between ideal and challenging channel condi-
tions, resource consumption measured in PRBs per millisecond
increases more than 4 times due to more robust coding. The
high latency heavily influences control performance for the DT
evoBOT, inducing more than 3 to 3.7 times (cf. table in Fig. 6)
more energy consumption than local on-robot deployment.
During an experiment with the challenging channel, control
lost balance, causing the robot to fall. Thus, latency-optimized
strategies are targeted in the following.



Reducing SRO periodicity for shorter inter-scheduling-
request times, the optimized reactive scheduling strategy
shows a significantly lower mean latency of 6.3 ms for the
ideal and 7.3 ms for the TDLC channel. However, resource
usage is vastly increased by more than 3 (ideal channel) and
2 times (TDLC) due to high scheduling overhead. Yet, control
performance highly improves, with power rising by only 6.5 W
versus on-robot operation. Static resource assignment reduces
latency to a mean of 3.7 to 4 ms. These assignments are fixed
and wasted if not used. Notably, for ideal channels, this is more
power efficient than the optimized reactive approach. Yet, for
adverse channels, more PRBs are consumed when the over-
head of reactive scheduling reduces. Locomotion performance
is close to on-robot with only 4 W power increase, still at the
cost of high PRB usage, especially for complex channels.

The proposed approach using the predictive scheduling
dApp providing tailored resources in time can maintain the
delay performance of the static approach with minor outliers,
resulting in a mean latency of 4.1 to 4.9ms. At the start
of transmissions, we initially observe higher latencies, which
vanish after convergence of the model’s predictions to the
transmission pattern. Compared to the optimized reactive
policy, under attenuated conditions, latencies reduce by 34 %
while using 47 % less resources, while for challenging TDLC
channels latencies are reduced by 33 % combined with 23 %
less resource usage. Still, control performance is maintained
with just a 4.2 W power increase over on-robot deployment.

Trajectory tracking in Fig. 6 illustrates control performance
by plotting commanded velocity (black) for linear and angular
base velocity compared to all studied approaches for the
TDLC channel. While the reactive baseline policy shows
strong oscillations in linear velocity, the other approaches
align tightly with on-device controller performance. Still, the
optimized reactive approach shows some oscillations, while
static and dApp-based policies closely mimic the on-robot
trajectory after initial convergence. Angular velocity is tightly
tracked by all policies despite the reactive baseline.

VI. CONCLUSION AND OUTLOOK

This work demonstrates networked real-time control of a
two-wheeled inverted pendulum robot via an O-RAN network.
With the proposed ML-based proactive resource scheduling
dApp, we enable 24 % decreased MSE on a reference tra-
jectory tracking versus the baseline reactive approach. The
employed DLinear model enables the prediction of exact
packet arrival times and sizes to reduce the mean uplink
latency by 34 % and additionally lower PRB usage by 47 % for
ideal conditions and 23 % for challenging TDLC channels. In
future work, we will further evaluate the influence of mobility
and integrate channel prediction to improve robustness.
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